Accéder directement au contenu Accéder directement à la navigation
Bienvenue dans la collection du Laboratoire de Mathématiques
J.A. Dieudonné - UMR 7351




A partir de cette page, vous pouvez :

 

DERNIERS DÉPÔTS

Chargement de la page

 


 

NOMBRE DE DOCUMENTS

2 748

NOMBRE DE NOTICES

1 685

EVOLUTION DES DÉPÔTS

RÉPARTITION DES DÉPÔTS PAR TYPE DE DOCUMENT

MOTS CLÉS

Operad Consistency Chaos Interacting particle systems Operator splitting Bifurcations Solitary waves Large deviations Finite volume Overland flow Elastic waves Finite volume method Simulation Data completion Seismic imaging Modélisation Hyperbolic systems Source terms Discontinuous Galerkin method Turbulence Finite volume scheme Discontinuous Galerkin Dynamical systems Rheology Domain decomposition Nanophotonics CFD Stabilité Segmentation Stability SHAPE OPTIMIZATION Discontinuous Galerkin methods Model selection Nonlinear elliptic equations PDE Image segmentation Finite volumes Nonlinear vibrations Well-balanced scheme Normal forms Time-domain Maxwell equations Complexity Inverse problems Synchronization Adaptive estimation Implicitization Finite volume schemes Optimisation Periodic solutions NAVIER-STOKES EQUATIONS Descent direction Bifurcation theory Blow-up Water waves Game theory Optimal control Harmonic domain Tokamak Finite element Density estimation Gibbs distributions Inverse problem Entropy solution Hydrostatic reconstruction Optimization Isogeometric analysis Shallow water Interpolation Maxwell's equations Finite elements Coextrusion VOLUMES FINIS Finite volume methods Aerodynamics Workflows Parallel computing Nonlinear water waves Pattern formation Saint-Venant Maxwell equations Convergence Normal form Shape optimization Shallow water equations Classification Boundary conditions Numerical analysis Scalar conservation laws Euler equations Plasma equilibrium Friction Partial differential equations Small divisors Random graphs Chemotaxis Finite element method Operads Conservation laws Convergence analysis Hybridizable discontinuous Galerkin method