Nonsmooth Convex Optimization for Structured Illumination Microscopy Image Reconstruction

Abstract : In this paper, we propose a new approach for structured illumination microscopy image reconstruction. We first introduce the principles of this imaging modality and review its properties in various conditions. We then propose the minimization of nonsmooth convex functionals for the recovery of the unknown image and investigate several data–fitting and regularization terms in order to tackle reconstruction of noisy data. More specifically, we consider an original approach based on sparse local patch dictionaries for the regularization of the estimate. We demonstrate the good performance of the proposed approach on a test benchmark and perform some test experiments on images acquired on two different microscopes.
Type de document :
Pré-publication, Document de travail
Rapport interne de GIPSA-lab. 2015
Liste complète des métadonnées

Littérature citée [47 références]  Voir  Masquer  Télécharger
Contributeur : Jérôme Boulanger <>
Soumis le : lundi 19 juin 2017 - 13:11:04
Dernière modification le : vendredi 31 août 2018 - 09:18:24
Document(s) archivé(s) le : vendredi 15 décembre 2017 - 16:34:17


Fichiers produits par l'(les) auteur(s)


  • HAL Id : hal-01274259, version 2


Jérôme Boulanger, Nelly Pustelnik, Laurent Condat, Lucie Sengmanivong, Tristan Piolot. Nonsmooth Convex Optimization for Structured Illumination Microscopy Image Reconstruction. Rapport interne de GIPSA-lab. 2015. 〈hal-01274259v2〉



Consultations de la notice


Téléchargements de fichiers