From WiFi Performance Evaluation to Controlled Mobility in Drone Networks - Thèses de l'INSA Lyon Accéder directement au contenu
Thèse Année : 2021

From WiFi Performance Evaluation to Controlled Mobility in Drone Networks

De l'évaluation des performances Wi-Fi à la mobilité contrôlée pour les réseaux de drones

Résumé

Mobility in telecommunication networks is often seen as a hassle that needs to be dealt with: a mobile wireless device has to adapt is trans-mission parameters in order to remain connected to its counterpart(s),as the channel evolves with the device’s movements. Drones, which are unmanned aerial vehicles in the context of this thesis, are no exception.Because of their freedom of movement, their three-dimensional mobility in numerous and varied environments, their limited payload and their energy constraints, and because of the wide range of their real-world applications, drones represent new exciting study objects whose mobility is a challenge. Yet, mobility can also be a chance for drone networks,especially when we can control it. In this thesis, we explore how con-trolled mobility can be used to increase the performance of a drone network, with a focus on IEEE 802.11 networks and small multi-rotor drones. We first describe how mobility is dealt with in 802.11 networks,that is to say using rate adaptation mechanisms, and reverse engineer the rate adaptation algorithm used in the Wi-Fi chipset of the Intel Aero Drone. The study of this rate adaptation algorithm, both experimental and through simulation, through its implementation in the network simulator NS-3, allows its comparison against other well-known algorithms.This highlights how big the impact of such algorithms are for drone networks, with regard to their mobility, and how different the resulting behaviors of each node can be. Therefore, a controlled mobility solution aiming to improve network performances cannot assume much about the behavior of the rate adaptation algorithms. In addition to that, drone applications are diverse, and imposing mobility constraints without crippling a complete pan of these applications is difficult. We therefore propose a controlled mobility solution which leverages the antenna radiation pattern of the drones. This algorithm is evaluated thanks to a customized simulation framework for antenna and drone simulation,based on NS-3. This solution, which works with any rate adaptation algorithm, is distributed, and do not require a global coordination that would be costly. It also does not require a full and complete control of the drone mobility as existing controlled mobility solutions require, which makes this solution compatible with various applications.
La mobilité dans les réseaux de télécommunications est souvent considérée comme un problème qu'il faut résoudre : un appareil mobile sans fil doit adapter ses paramètres de transmission afin de rester connecté à son ou ses homologues, car le canal évolue avec les mouvements de l'appareil. Les drones, qui sont des véhicules aériens sans pilote, ne font pas exception. En raison de leur grande liberté de mouvements, de leur mobilité tridimensionnelle, et ce dans des environnements aussi nombreux que variés, de leur charge utile limitée et de leurs contraintes énergétiques, et en raison du large éventail de leurs applications dans le monde réel, les drones représentent de nouveaux objets d'étude passionnants dont la mobilité est un défi. Pourtant, la mobilité peut aussi être une chance pour les réseaux de drones, surtout lorsque nous pouvons la contrôler. Dans cette thèse, nous explorons comment la mobilité contrôlée peut être utilisée pour augmenter les performances d'un réseau de drones, en mettant l'accent sur les réseaux IEEE 802.11 et les petits drones multi-rotor. Nous décrivons d'abord comment la mobilité est traitée dans les réseaux 802.11, c'est-à-dire en utilisant des mécanismes d'adaptation de débit, puis nous effectuons l'ingénierie inverse de l'algorithme d'adaptation de débit utilisé dans le chipset Wi-Fi du drone Intel Aero. L'étude de cet algorithme d'adaptation de débit, de manière à la fois expérimentale et par simulation, grâce à son implémentation dans le simulateur de réseau NS-3, permet de le comparer à d'autres algorithmes bien connus. Cette étude met en évidence l'importance de ces algorithmes pour les réseaux de drones, en lien avec leur mobilité, et la différence de comportement de chaque nœud en résultant. Par conséquent, une solution de mobilité contrôlée visant à améliorer les performances des réseaux ne peut pas supposer beaucoup du comportement des algorithmes d'adaptation de débits. En outre, les applications des réseaux de drones sont diverses, et il est difficile d'imposer des contraintes de mobilité sans devenir incompatible avec un pan complet d'applications. Nous proposons donc une solution de mobilité contrôlée qui exploite le diagramme de rayonnement de l'antenne des drones. Cet algorithme est évalué grâce à outil de simulation développé pour l'occasion, permettant la simulation d'antennes et de drones, basé sur NS-3. Cette solution, qui fonctionne avec n'importe quel algorithme d'adaptation de débit, est distribuée, et ne nécessite aucune coordination globale ou communication spécifique qui pourrait s'avérer coûteuses. Elle ne nécessite pas non plus un contrôle complet de la mobilité du drone comme le requièrent les solutions de mobilité contrôlée existantes, ce qui rend cette solution compatible avec diverses applications.
Fichier principal
Vignette du fichier
main.pdf (20.16 Mo) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)

Dates et versions

tel-03126953 , version 1 (01-02-2021)

Identifiants

  • HAL Id : tel-03126953 , version 1

Citer

Rémy Grünblatt. From WiFi Performance Evaluation to Controlled Mobility in Drone Networks. Networking and Internet Architecture [cs.NI]. Université Claude Bernard Lyon 1, 2021. English. ⟨NNT : ⟩. ⟨tel-03126953⟩
481 Consultations
194 Téléchargements

Partager

Gmail Facebook X LinkedIn More