Florian Rousset1,2, Nicolas Ducros1, Andrea Farina2, Gianluca Valentini2, Cosimo D'Andrea2, Françoise Peyrin1

1Univ Lyon, INSA Lyon, CNRS 5220, INSERM U1206, CREATIS – Lyon, France
2Politecnico di Milano, Dipartimento di Fisica – Milan, Italy

Time-resolved wavelet-based acquisitions using a single pixel camera

SPIE Photonics West – BIOS 2017 | February 1st, 2017
Overview

Introduction
1 – Single pixel camera
2 – Motivation
3 – Problem
4 – State of the art

Materials and methods
1 – Experimental setup
2 – Wavelet decomposition
3 – ABS-WP strategy
4 – Extension to TR measurements

Results
1 – Temporal resolution
2 – Application to FLIM
3 – Multispectral TR measurements

Conclusion
Introduction > 1 – Single pixel camera

- **Spatial modulator**: SLM, LCD, **DMD** (Digital Micro-mirror Device)

- **DMD**: array mirrors that can *independently* be tilted in two states

Single-pixel camera (SPC) Two mirrors of 13.7 µm (Texas Instruments)

![Image of Digital micro-mirror device (DMD)](image-url)
Multi-dimensional acquisitions \rightarrow management of huge datasets

Single pixel camera (SPC) \rightarrow partial compression at the hardware level
- Infrared or multispectral imaging [Edgar et al., Scientific Reports, 5, 2015]
- Low cost time-resolved system [Pian et al., Biomedical Optics, 2016]

COUPLE COMPRESSION TECHNIQUES (SOFTWARE LEVEL) WITH THE SPC (HARDWARE LEVEL)
Introduction > 3 – Problem

Image of size $N \times N$: f

I patterns of size $N \times N$: p_i

$\Rightarrow I$ measurements: $m_i = f^T p_i$

- Sequential measurements m_i for different patterns p_i

- **Problems**

 - P1 – Choice / design of the patterns p_i

 - P2 – Restoration of the image f from the measures m_i knowing p_i
Compressive sensing \cite{Duarte2008}

- P1 – Random ±1 Bernoulli variables
- P2 – Restoration by l_1-minimization

Random pattern
Introduction > 4 – State of the art

➢ Compressive sensing [Duarte et al., IEEE SPM, 25, 2008]
 • P1 – Random ±1 Bernoulli variables 😊
 • P2 – Restoration by l_1-minimization 😞

➢ Basis scan [Zhang et al., Nature Comm., 6, 2015]
 • P1 – N^2 patterns in a basis (Hadamard, Fourier, etc.) 😞
 • P2 – Chosen basis inverse transform 😊
Compressive sensing \cite{Duarte et al., IEEE SPM, 25, 2008}

- P1 – Random ±1 Bernoulli variables 😊
- P2 – Restoration by l_1-minimization 😞

Basis scan \cite{Zhang et al., Nature Comm., 6, 2015}

- P1 – N^2 patterns in a basis (Hadamard, Fourier, etc.) 😞
- P2 – Chosen basis inverse transform 😊

Adaptive basis scan \cite{Dai et al., Applied Optics, 53 (29), 2014}

- P1 – $I << N^2$ patterns in a chosen basis 😊
- P2 – Chosen basis inverse transform 😊

→ Prediction of the I patterns based on previous measures
Compressive sensing [Duarte et al., IEEE SPM, 25, 2008]
- P1 – Random ±1 Bernoulli variables ☹
- P2 – Restoration by l_1-minimization ☹

Basis scan [Zhang et al., Nature Comm., 6, 2015]
- P1 – N^2 patterns in a basis (Hadamard, Fourier, etc.) ☹
- P2 – Chosen basis inverse transform ☺

Adaptive basis scan [Dai et al., Applied Optics, 53 (29), 2014]
- P1 – $I \ll N^2$ patterns in a chosen basis ☺
- P2 – Chosen basis inverse transform ☺
→ Prediction of the I patterns based on previous measures
Introduction
1 – Single pixel camera
2 – Motivation
3 – Problem
4 – State of the art

Materials and methods
1 – Experimental setup
2 – Wavelet decomposition
3 – ABS-WP strategy
4 – Extension to TR measurements

Results
1 – Temporal resolution
2 – Application to FLIM
3 – Multispectral TR measurements

Conclusion
Materials and methods > 1 – Experimental setup

Photon counting board (SPC-630, Becker & Hickl GmbH)

PMT

Fluorophores absorbing light at λ_{abs} and emitting at λ_{em}

Supercontinuum pulsed white laser (SuperK Extreme EXW-12, NKT Photonics)

Tunable wavelength filter (SuperK Select)

HPM-100-50, Becker & Hickl GmbH

$T = 4096$ time channels

$m_{i,t} \quad t \in [1, T]$

I patterns p_i

1024×768 DMD (DLP7000-V7001, Vialux)
Adaptive approach in the wavelet domain

One wavelet coefficient: \[c = f^T p \] \iff one SPC measurement

Non-linear approximation: retains a percentage of the strongest wavelet coefficients and shows excellent image recovery [Mallat, Academic Press, 2008]

Ground truth 512 x 512 image

4-level wavelet decomposition 512 x 512
Materials and methods > 2 – Wavelet decomposition

- **Adaptive** approach in the wavelet domain

- One wavelet coefficient: \(c = f^T p \) ↔ one SPC measurement

- **Non-linear approximation**: retains a percentage of the strongest wavelet coefficients and shows excellent image recovery [Mallat, Academic Press, 2008]

Ground truth 512 x 512 image

10% of the strongest coefficients
Materials and methods > 2 – Wavelet decomposition

- **Adaptive** approach in the wavelet domain

- One wavelet coefficient: \[c = f^T p \] \(\iff \) one SPC measurement

- **Non-linear approximation**: retains a percentage of the **strongest wavelet coefficients** and shows excellent image recovery [Mallat, Academic Press, 2008]

![Ground truth 512 x 512 image](image1)

![Restored image with 10% of the coefficients](image2)
Materials and methods > 3 – ABS-WP strategy

- **ABS-WP**: Adaptive Basis Scan by Wavelet Prediction [Rousset et al., IEEE TCI, in press, 2017]

- **Multiresolution** approach: non-linear approximation idea applied on each of the \(j = 1 \ldots J \) scales of the \(J \)-level wavelet decomposition

- **Steps**: example for a 128 x 128 pixel image for \(J = 1 \)
ABS-WP: Adaptive Basis Scan by Wavelet Prediction [Rousset et al., IEEE TCI, in press, 2017]

Multiresolution approach: non-linear approximation idea applied on each of the $j = 1 \ldots J$ scales of the J-level wavelet decomposition

Steps: example for a 128 x 128 pixel image for $J = 1$

1 – Approximation image acquisition
Materials and methods > 3 – ABS-WP strategy

- **ABS-WP**: Adaptive Basis Scan by Wavelet Prediction \([\textit{Rousset et al., IEEE TCI, in press, 2017}]\)

- **Multiresolution** approach: non-linear approximation idea applied on each of the \(j = 1 \ldots J\) scales of the \(J\)-level wavelet decomposition

- **Steps**: example for a 128 x 128 pixel image for \(J = 1\)
 1. Approximation image acquisition
 2. Over-sampling by a factor 2 by a bi-cubic interpolation
Materials and methods > 3 – ABS-WP strategy

- **ABS-WP:** Adaptive Basis Scan by Wavelet Prediction \([Rousset \text{ et al., IEEE TCI, in press, 2017}] \)

- **Multiresolution** approach: non-linear approximation idea applied on each of the \(j = 1 \ldots J \) scales of the \(J \)-level wavelet decomposition

- **Steps:** example for a 128 x 128 pixel image for \(J = 1 \)
 1. Approximation image acquisition
 2. Over-sampling by a factor 2 by a bi-cubic interpolation
 3. 1-level wavelet transform
Materials and methods > 3 – **ABS-WP strategy**

- **ABS-WP**: Adaptive Basis Scan by Wavelet Prediction \([\text{Rousset et al.}, \text{IEEE TCI, in press, 2017}]\)

- **Multiresolution** approach: non-linear approximation idea applied on each of the \(j = 1 \ldots J\) scales of the \(J\)-level wavelet decomposition

- **Steps**: example for a 128 x 128 pixel image for \(J = 1\)
 1. Approximation image acquisition
 2. Over-sampling by a factor 2 by a bi-cubic interpolation
 3. 1-level wavelet transform
 4. A percentage \(p_j\) of the strongest detail wavelet coefficients is retained
ABS-WP: Adaptive Basis Scan by Wavelet Prediction [Rousset et al., IEEE TCI, in press, 2017]

Multiresolution approach: non-linear approximation idea applied on each of the $j = 1 \ldots J$ scales of the J-level wavelet decomposition

Steps: example for a 128 x 128 pixel image for $J = 1$

1 – Approximation image acquisition
2 – Over-sampling by a factor 2 by a bi-cubic interpolation
3 – 1-level wavelet transform
4 – A percentage p_j of the strongest detail wavelet coefficients is retained
5 – The “predicted” significant coefficients are experimentally acquired
Materials and methods > 3 – ABS-WP strategy

- **ABS-WP**: Adaptive Basis Scan by Wavelet Prediction \cite{Rousset et al., IEEE TCI, in press, 2017}

- **Multiresolution** approach: non-linear approximation idea applied on each of the \(j = 1 \ldots J \) scales of the \(J \)-level wavelet decomposition

- **Steps**: example for a 128 x 128 pixel image for \(J = 1 \)
 1. Approximation image acquisition
 2. Over-sampling by a factor 2 by a bi-cubic interpolation
 3. 1-level wavelet transform
 4. A percentage \(p_j \) of the strongest detail wavelet coefficients is retained
 5. The “predicted” significant coefficients are experimentally acquired

- Set of percentages \(\mathcal{P} = \{p_J, ..., p_1\} \) to control the compression rate (CR)
Materials and methods > 4 – Extension to TR measurements

- N×N single image $f \rightarrow$ 2D+t stack of T images f_1, \ldots, f_T of size N×N

- Vector of time measurements directly obtained by the TR-SPC

$$m_i^\top = p_i^\top F_{1\ldots T}$$

- Prediction performed on the continuous-wave (CW) measures

$$m_i = \sum_{t=1}^{T} m_{i,t}$$
Overview

Introduction
1 – Single pixel camera
2 – Motivation
3 – Problem
4 – State of the art

Materials and methods
1 – Experimental setup
2 – Wavelet decomposition
3 – ABS-WP strategy
4 – Extension to TR measurements

Results
1 – Temporal resolution
2 – Application to FLIM
3 – Multispectral TR measurements

Conclusion
Results > 1 – Temporal resolution

- Cuvettes with different solutions of dyes (Coumarin 540A or DCM) in ethanol
 - Laser
 - C540A
 - DCM
 - Mirror
 - 8.5 cm
 - 2 cm
 - 1.2 cm
 - 4 cm

- Illumination: wavelengths ranging from 455 to 485 nm with a 5 nm step
 - \(\lambda_{\text{abs}} = 422 \text{ nm} \)
 - \(\lambda_{\text{em}} = 532 \text{ nm} \)
 - \(\lambda_{\text{abs}} = 468 \text{ nm} \)
 - \(\lambda_{\text{em}} = 624 \text{ nm} \)

- Detection: long-pass filter at 500 nm (FEL0500, ThorLabs)
High temporal resolution with a minimum of 3.05 ps per time channel

In practice → binning of the time channels to reduce the noise influence

Acquisition of the cuvettes with a binning of 10 (30.05 ps per time channel):

\[t \approx 10 \text{ (frames)} \times 30.05 \text{ ps} \]

\[\Rightarrow d = c \times t \approx 9 \text{ cm} \]

Ability to detect the laser beam travelling at the speed of light
Results > 2 – Application to FLIM

- Phantom with different fluorophores

Red autofluorescent plastic slide (CHROMA):
 \(\lambda_{\text{abs}} = 520 \text{ nm} \)
 \(\lambda_{\text{em}} = 625 \text{ nm} \)

Solution of DCM in ethanol:
 \(\lambda_{\text{abs}} = 468 \text{ nm} \)
 \(\lambda_{\text{em}} = 624 \text{ nm} \)

Green autofluorescent plastic slide (CHROMA):
 \(\lambda_{\text{abs}} = 464 \text{ nm} \)
 \(\lambda_{\text{em}} = 525 \text{ nm} \)

- Illumination: 455 to 485 nm with a 5 nm step

- Detection: long-pass filter at 500 nm (FEL0500, ThorLabs)

- \(T = 72 \) time channels: 0 to 21.66 ns (0.305 ns time step)
Results > 2 – Application to FLIM

- Total of 72 images of size 64×64 acquired and restored with ABS-WP using Daubechies wavelet (Db5) with a CR of 93%:

- Fluorescence decay

\[I(t) = Ae^{-\frac{t}{\tau}} \]

Time curves

- SPC recovered stack
- Fluorescence decay

SPIE Photonics West 2017 – 10070-43 | F. Rousset
Results > 2 – Application to FLIM

- $I(t) = Ae^{-\frac{t}{\tau}}$ depicted by experimental curves $\hat{I}(t)$ for each pixel of the image

- Fitting of the model for each pixel \rightarrow amplitude and lifetime maps

$$(A^*, \tau^*) = \arg\min ||\hat{I}(t) - Ae^{-\frac{t}{\tau}}||^2_2$$

Amplitude (photons) Lifetime (ns)
Results > 3 – Multispectral TR measurements

- New experimental setup: addition of a grating with $\Lambda = 16$ parallel detectors (PML-16-1, Becker & Hickl GmbH) \rightarrow possibility to obtain $\Lambda \times T$ images

- Images obtained with ABS-WP with the same parameters:

- Ability to discern the 3 fluorophores using the time and spectral information

CW image for $\lambda = 525$ nm

CW image for $\lambda = 625$ nm
Introduction
1 – Single pixel camera
2 – Motivation
3 – Problem
4 – State of the art

Materials and methods
1 – Experimental setup
2 – Wavelet decomposition
3 – ABS-WP strategy
4 – Extension to TR measurements

Results
1 – Temporal resolution
2 – Application to FLIM
3 – Multispectral TR measurements

Conclusion
Conclusion

- Proposed system to acquire $2D + t + \lambda$ images by a SPC:
 - Adaptive technique
 - Wavelet patterns
 - Bi-cubic interpolation prediction
 - Multiresolution approach

- Faster than CS for equivalent image quality [Rousset et al., IEEE TCI, in press, 2017]

- Efficient yet low cost (multispectral) time-resolved system, transposable on a microscope

- Perspectives
 - Investigate prediction based only in certain time channels
 - Method to divide the acquisition time by 2
Acknowledgments

Nicolas Ducros
Françoise Peyrin

Andrea Farina
Cosimo D’Andrea
Gianluca Valentini

florian.rousset@insa-lyon.fr

ANR-11-LABX-0063 / ANR-11-IDEX-0007

N. 284464
N. 20130615
Wavelet pattern creation

- We note W an orthonormal operator so that one wavelet pattern p can be obtained as

$$p = W^{-1}e$$

$W \in \mathbb{R}^{P \times P}$

with e a unit vector chosen from the canonic basis:

- Obtained patterns have real positive and negative values. The DMD can only receive b-bits patterns

 \rightarrow uniform quantization of the patterns and positive/negative separation:

$$q_f = \frac{\max(|p|)}{2^b - 1}$$

$$\hat{p} = \left[\frac{1}{q_f} p\right]$$

$$c \approx q_f f^\top \hat{p} = q_f (f^\top \hat{p}^+ - f^\top \hat{p}^-)$$
Average computation times (acquisition time excluded), includes TV-minimization for CS and the prediction step + restoration for ABS-WP

<table>
<thead>
<tr>
<th>Image size</th>
<th>Time (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CS</td>
</tr>
<tr>
<td>128 x 128</td>
<td>13.18</td>
</tr>
<tr>
<td>256 x 256</td>
<td>213.62</td>
</tr>
</tbody>
</table>

TV-minimization demands expensive computations, time increases quickly with the number of measures and the image size.

For ABS-WP, bi-cubic interpolation and the wavelet transform are optimized and fast operations.

Real time possible for our technique.