C. D. Sibley, H. Rabin, and M. G. Surette, Cystic fibrosis: a polymicrobial infectious disease, vol.1, pp.26-31, 2006.

D. Carriel, S. Garcia, P. Castelli, F. Lamourette, P. Fenaille et al., A Novel Subfamily of Bacterial AAT-Fold Basic Amino Acid Decarboxylases and Functional Characterization of Its First Representative: Pseudomonas aeruginosa LdcA, Genome Biol Evol, vol.10, pp.3058-3075, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01987296

A. Rietsch, I. Vallet-gely, S. L. Dove, and J. J. Mekalanos, ExsE, a secreted regulator of type III secretion genes in Pseudomonas aeruginosa, Proc Natl Acad Sci U S A, vol.102, pp.8006-8011, 2005.

P. Briaud, L. Camus, S. Bastien, A. Doléans-jordheim, F. Vandenesch et al., Coexistence with Pseudomonas aeruginosa alters Staphylococcus aureus transcriptome, antibiotic resistance and internalization into epithelial cells, 2019.

L. H. Tsang, J. E. Cassat, L. N. Shaw, K. E. Beenken, and M. S. Smeltzer, Factors Contributing to the Biofilm-Deficient Phenotype of Staphylococcus aureus sarA Mutants, PLoS ONE, vol.3, p.3361, 2008.

D. H. Figurski and D. R. Helinski, Replication of an origin-containing derivative of plasmid RK2 dependent on a plasmid function provided in trans, Proc Natl Acad Sci, vol.76, pp.1648-1652, 1979.

S. Chevalier, E. Bouffartigues, J. Bodilis, O. Maillot, O. Lesouhaitier et al., Structure, function and regulation of Pseudomonas aeruginosa porins, FEMS Microbiol Rev, vol.41, pp.698-722, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01969453

M. Schuster, C. P. Lostroh, T. Ogi, and E. P. Greenberg, Identification, timing, and signal specificity of Pseudomonas aeruginosa quorum-controlled genes: a transcriptome analysis, J Bacteriol, vol.185, pp.2066-2079, 2003.

J. M. Borrero-de-acuña, M. Rohde, J. Wissing, L. Jänsch, M. Schobert et al., Protein Network of the Pseudomonas aeruginosa Denitrification Apparatus, J Bacteriol, vol.198, pp.1401-1413, 2016.

V. E. Wagner, D. Bushnell, L. Passador, A. I. Brooks, and B. H. Iglewski, Microarray analysis of Pseudomonas aeruginosa quorum-sensing regulons: effects of growth phase and environment, J Bacteriol, vol.185, pp.2080-2095, 2003.

B. R. Lundgren, Z. Sarwar, A. Pinto, J. G. Ganley, and C. T. Nomura, Ethanolamine Catabolism in Pseudomonas aeruginosa PAO1 Is Regulated by the Enhancer-Binding Protein EatR (PA4021) and the Alternative Sigma Factor RpoN, J Bacteriol, vol.198, pp.2318-2329, 2016.

H. Arai, M. Hayashi, A. Kuroi, M. Ishii, and Y. Igarashi, Transcriptional regulation of the flavohemoglobin gene for aerobic nitric oxide detoxification by the second nitric oxide-responsive regulator of Pseudomonas aeruginosa, J Bacteriol, vol.187, pp.3960-3968, 2005.

J. Campos-garcía, L. Ordóñez, and G. Soberón-chávez, The Pseudomonas aeruginosa hscA gene encodes Hsc66, a DnaK homologue, Microbiology (Reading, Engl), vol.146, pp.1429-1435, 2000.

A. Romsang, J. Duang-nkern, P. Leesukon, K. Saninjuk, P. Vattanaviboon et al., The ironsulphur cluster biosynthesis regulator IscR contributes to iron homeostasis and resistance to oxidants in Pseudomonas aeruginosa, PLoS ONE, vol.9, p.86763, 2014.

S. Elias, E. Degtyar, and E. Banin, FvbA is required for vibriobactin utilization in Pseudomonas aeruginosa, Microbiology (Reading, Engl), vol.157, pp.2172-2180, 2011.

D. J. Hassett, M. L. Howell, U. A. Ochsner, M. L. Vasil, Z. Johnson et al., An operon containing fumC and sodA encoding fumarase C and manganese superoxide dismutase is controlled by the ferric uptake regulator in Pseudomonas aeruginosa: fur mutants produce elevated alginate levels, J Bacteriol, vol.179, pp.1452-1459, 1997.

A. Eichner, N. Günther, M. Arnold, M. Schobert, J. Heesemann et al., Marker genes for the metabolic adaptation of Pseudomonas aeruginosa to the hypoxic cystic fibrosis lung environment, Int J Med Microbiol, vol.304, pp.1050-1061, 2014.

B. R. Borlee, A. D. Goldman, K. Murakami, R. Samudrala, D. J. Wozniak et al., Pseudomonas aeruginosa uses a cyclic-di-GMP-regulated adhesin to reinforce the biofilm extracellular matrix, Mol Microbiol, vol.75, pp.827-842, 2010.

X. Yao, W. He, and C. Lu, Functional characterization of seven ?-Glutamylpolyamine synthetase genes and the bauRABCD locus for polyamine and ?-Alanine utilization in Pseudomonas aeruginosa PAO1, J Bacteriol, vol.193, pp.3923-3930, 2011.

L. Zhang and T. Mah, Involvement of a novel efflux system in biofilm-specific resistance to antibiotics, J Bacteriol, vol.190, pp.4447-4452, 2008.

D. S. Mern, S. Ha, V. Khodaverdi, N. Gliese, and H. Görisch, A complex regulatory network controls aerobic ethanol oxidation in Pseudomonas aeruginosa: indication of four levels of sensor kinases and response regulators, Microbiology (Reading, Engl), vol.156, pp.1505-1516, 2010.

J. A. Aguilar, A. N. Zavala, C. Díaz-pérez, C. Cervantes, A. L. Díaz-pérez et al., The atu and liu clusters are involved in the catabolic pathways for acyclic monoterpenes and leucine in Pseudomonas aeruginosa, Appl Environ Microbiol, vol.72, pp.2070-2079, 2006.

H. T. Chou, J. Li, Y. Peng, and C. Lu, Molecular characterization of PauR and its role in control of putrescine and cadaverine catabolism through the ?-glutamylation pathway in Pseudomonas aeruginosa PAO1, J Bacteriol, vol.195, pp.3906-3913, 2013.

A. Daddaoua, A. Corral-lugo, J. Ramos, and T. Krell, Identification of GntR as regulator of the glucose metabolism in Pseudomonas aeruginosa, Environ Microbiol, vol.19, pp.3721-3733, 2017.

N. C. Worstell, A. Singla, P. Saenkham, T. Galbadage, P. Sule et al., Hetero-Multivalency of Pseudomonas aeruginosa, Lectin LecA Binding to Model Membranes. Sci Rep, vol.8, p.8419, 2018.

C. Attila, A. Ueda, and T. K. Wood, PA2663 (PpyR) increases biofilm formation in Pseudomonas aeruginosa PAO1 through the psl operon and stimulates virulence and quorum-sensing phenotypes, Appl Microbiol Biotechnol, vol.78, pp.293-307, 2008.

R. C. Fowler and N. D. Hanson, The OpdQ porin of Pseudomonas aeruginosa is regulated by environmental signals associated with cystic fibrosis including nitrate-induced regulation involving the NarXL two-component system, vol.4, pp.967-982, 2015.

K. Taniyama, H. Itoh, A. Takuwa, Y. Sasaki, S. Yajima et al., Group X aldehyde dehydrogenases of Pseudomonas aeruginosa PAO1 degrade hydrazones, J Bacteriol, vol.194, pp.1447-1456, 2012.

Y. Wang, U. Ha, L. Zeng, and J. S. , Regulation of membrane permeability by a two-component regulatory system in Pseudomonas aeruginosa, Antimicrob Agents Chemother, vol.47, pp.95-101, 2003.

C. S. Bernard, C. Bordi, E. Termine, A. Filloux, and S. De-bentzmann, Organization and PprB-dependent control of the Pseudomonas aeruginosa tad Locus, involved in Flp pilus biology, J Bacteriol, vol.191, pp.1961-1973, 2009.

W. He, G. Li, C. Yang, and C. Lu, Functional characterization of the dguRABC locus for D-Glu and d-Gln utilization in Pseudomonas aeruginosa PAO1, Microbiology (Reading, Engl), vol.160, pp.2331-2340, 2014.

M. L. Gerth, M. P. Ferla, and P. B. Rainey, The origin and ecological significance of multiple branches for histidine utilization in Pseudomonas aeruginosa PAO1, Environ Microbiol, vol.14, pp.1929-1940, 2012.