Proximity Operator of a Sum of Functions; Application to Depth Map Estimation

Abstract : Proximal splitting algorithms for convex optimization are largely used in signal and image processing. They make possible to call the individual proximity operators of an arbitrary number of functions, whose sum is to be minimized. But the larger this number, the slower the convergence. In this work, we show how to compute the proximity operator of a sum of two functions, for a certain type of functions operating on objects having a graph structure. The gain provided by avoiding unnecessary splitting is illustrated by an application to depth map estimation.
Type de document :
Article dans une revue
IEEE Signal Processing Letters, Institute of Electrical and Electronics Engineers, 2017, 24 (12), pp.1827 - 1831
Liste complète des métadonnées

Littérature citée [30 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01570182
Contributeur : Nelly Pustelnik <>
Soumis le : jeudi 31 août 2017 - 17:11:29
Dernière modification le : jeudi 19 avril 2018 - 14:54:04

Fichier

version_hal_revised.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01570182, version 2

Citation

Nelly Pustelnik, Laurent Condat. Proximity Operator of a Sum of Functions; Application to Depth Map Estimation. IEEE Signal Processing Letters, Institute of Electrical and Electronics Engineers, 2017, 24 (12), pp.1827 - 1831. 〈hal-01570182v2〉

Partager

Métriques

Consultations de la notice

333

Téléchargements de fichiers

532