Experimental optimisation of the X-ray energy in microbeam radiation therapy - WP1: Méthodes et instrumentations innovantes en radiothérapies Accéder directement au contenu
Article Dans Une Revue Physica Medica Année : 2018

Experimental optimisation of the X-ray energy in microbeam radiation therapy

Résumé

Microbeam radiation therapy has demonstrated superior normal tissue sparing properties compared to broad-beam radiation fields. The ratio of the microbeam peak dose to the valley dose (PVDR), which is dependent on the X-ray energy/spectrum and geometry, should be maximised for an optimal therapeutic ratio. Simulation studies in the literature report the optimal energy for MRT based on the PVDR. However, most of these studies have considered different microbeam geometries to that at the Imaging and Medical Beamline (50 μm beam width with a spacing of 400 μm). We present the first fully experimental investigation of the energy dependence of PVDR and microbeam penumbra. Using monochromatic X-ray energies in the range 40–120 keV the PVDR was shown to increase with increasing energy up to 100 keV before plateauing. PVDRs measured for pink beams were consistently higher than those for monochromatic energies similar or equivalent to the average energy of the spectrum. The highest PVDR was found for a pink beam average energy of 124 keV. Conversely, the mi-crobeam penumbra decreased with increasing energy before plateauing for energies above 90 keV. The effect of bone on the PVDR was investigated at energies 60, 95 and 120 keV. At depths greater than 20 mm beyond the bone/water interface there was almost no effect on the PVDR. In conclusion, the optimal energy range for MRT at IMBL is 90–120 keV, however when considering the IMBL flux at different energies, a spectrum with 95 keV weighted average energy was found to be the best compromise.
Fichier principal
Vignette du fichier
Livingstone_Physica_Medica2018.pdf (746.65 Ko) Télécharger le fichier
Origine : Fichiers éditeurs autorisés sur une archive ouverte
Loading...

Dates et versions

hal-01680837 , version 1 (11-01-2018)

Identifiants

Citer

Jayde Livingstone, Andrew W Stevenson, Daniel Häusermann, Jean-François Adam. Experimental optimisation of the X-ray energy in microbeam radiation therapy. Physica Medica, 2018, 45, pp.156 - 161. ⟨10.1016/j.ejmp.2017.12.017⟩. ⟨hal-01680837⟩
109 Consultations
225 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More